Appendix F. Correlation
and Independence

Given a bivariate data sample (u;, v;) for i = 1,2, ..., n, the traditional model associated with
the statistical analysis of this sample is that the points (u;, v;) are the result of repeatedly
sampling possible values of a pair of random variables (U, V). As in Section 4.4, the sample
correlation coefficient r is then a statistic used to test the hypothesis that U and V are linearly

related—that is, values of |r| close to 1 are used to argue the existence of constants a, b, ¢ such
that aU + bV +c¢c = 0. ‘

F.1 Bivariate Random Variables

Definition F.1 The random variables U and V (discrete or continuous) are independent if
and only if

Pr((U < u) and (V < v)) =Pr(U < u) Pr(V <v)

for all possible values # and v of U and V. If the random variables are not independent, they
are said to be dependent.

Example F.1
The usual discrete-event simulation model of a single-server service node makes use of

.} the assumption of independence. For example, for each job, the service time and arrival

| time are assumed to be independent. Also, generally the service time does not depend on
the length of the queue, and so, unless the queue discipline is based upon a knowledge
of a job’s service times, the delay a job experiences in the queue is independent of the
job’s service time. The interarrival time and the delay in the queue, however, are not
independent—that is, if the interarrival time is quite large, then any pre-existing queue
has time to disappear, and, as a result, the delay in the queue experienced by a job with

554

:  Scanned with !
i & CamScanner’;


https://v3.camscanner.com/user/download

appendix F Correlation and Independence 555

a large interarrival time is likely to be small. Similarly, a job’s delay in the queue and
wait in the service node are definitely not independent, particularly if the utilization is
close to 1. , A A AR P

M vy 5 ,
( ~_ [ () &N 3 -

Independence is a very strong condkiti(‘)n—it means that the value of one random variable does
not depend in any (linear or nonlinear) way on the value of the other. How does independence =
relate to correlation?

The answer is that independent random variables are uncorrelated. The converse is not neces- ~——
sarily true, however—uncorrelated random variables can be dependent. To understand why this
is so, we begin by defining the covariance and correlation of two random variables.

Covariance

Definition F.2 The covariance of two random variables U and V is
vov = E[(U — pu)(V — py)),
where
ry = E[U] and pwy = E[V]

are the means of U and V, respectively.

The sample covariance (Definition 4.4.2) is an estimate of yyy, which is calculated from data

pairs. Moreover, just as there is an alternative formula for the sample covariance, an equivalent
expression for the covariance is

yov = E[UV] — pupy.
The derivation of this equation is left as an exercise.

Correlation Coefficient

Definition F.3 The correlation coefficient of two random variables U and V is

V= )
PU oyOy

where

ou = \E[(U — nu)?] and ov = E[(V — uv)?]

are the standard deviations of U and V respectively, which are assumed to be nonzero.
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The sample correlation coefficient (Definition 4.4.2) is an estimate of pyv. Therefore, by
analogy, it is reasonable to expect the following:

e |lpuv| =15
e |pyv| =1 if and only if there exists constants (a, b, ¢) such that aU + bV + ¢ = 0.

The proof that these two statements are true is left as an exercise.

Independence Implies Uncorrelated. One important consequence of independence (pre-
sented without proof) is that, if the random variables U and V are independent, then

E[UV]=E[U]E[V].
From this result, if U and V are independent, then yyy = 0. That is,
Yuv = E[UV] - pypy
= E[U]E[V] — nunv
= QUylv — RUHKV
=0,

as summarized by the following theorem. This theorem provides the justification for using a
nonzero value of the sample correlation coefficient to argue the nonindependence of the two
random variables from which the sample was drawn.

Theorem F.1 If the random variables U and V (discrete or continuous) are independent, then
they are uncorrelated. That is

e if U and V are independent then U and V are uncorrelated.

§ Equivalently, in terms of the contrapositive,

e if U and V are correlated (positive or negative) then U and V are dependent.

Example F.2

?  Consider an urn filled with black balls and white balls. Let p be the proportion of black

balls, and suppose that two balls are drawn from the urn, in sequence, with replacement.
Let the random variables U and V count the number of black balls (0 or 1) on the first
draw and on the second draw respectively. Because the draws are with replacement, U
and V are independent. Moreover, U and V are Bernoulli(p) random variables, and
so E[U] = E[V] = p. The possible values of UV are 0, 1, with Pr(UV = 1) = p%.
Therefore UV is a Bernoulli(p*) random variable, and so E[UV] = p2. From these
calculations, yyy = p2 - p2 =0, and so pyy = 0: As is consistent with Theorem F.1,
we see that U and V are uncorrelated.
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Example F.3
The converse of Theorem F.1 is not necessarily true. For example, let U be

Uniform(—1, 1) and define V = U2 It is intuitive that U and V are nor independent.
They are, however, uncorrelated. The pdf of U is f(u) =1/2 for =1 <u < 1, so

1
E[U]=/ ludu=---=0
)
E[V]—E[Uz]—flluzdu— £
e 2 Tt g
|
E[UV]=E[U3]=f §u3du=-~-=0.
-1

From these calculations, yyy = E[UV] — E[U]E[V]=0-0=0, and so pyy =0.
Thus we see that U and V are uncorrelated but dependent random variables. The depen-
dence of V on U despite pyy being zero becomes clear when one views the scatterplot |

generated by, say, 100 (u;, v;) samples of (U, V), along with the associated regression
line, as illustrated in Figure F.1.
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PR T Y )
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for i =1,2,...,n and if |r| is significantly different from O then, with_great confidence, we
can conclude that the (U,V) pair of random variables that generated the data is not
independent.* v
- N\ e

}a \ 7

A

Example F.4 /
) In Example 4.4.2, a modified version of program ssqg2 was used to simulate a FIFO
" M/M/1 service node and generate a steady-state sample of 100 interarrival times, |
delays, waits, and service times. Scatterplots and the associated correlation cocfﬁciey(ts\/
corresponding to four of the six possible pairings were illustrated. Intuition, coupled
with the results of this experiment, suggests the following (symmetric) table of pyy
correlation coefficient values

interarrival delay wait service
interarrival 1
delay - 1 7
. /7'W 4
wait - H- 1 * )
service 0 0 + 1 -
where +, —, and 0 indicate positive, negative, and no correlation respectively. The

0’s in this table are a consequence of Theorem F.1: Because the interarrival times
and service times are independent, their correlation is 0. Similarly, the delay and
service times are also independent, and so their correlation coefficient is 0 as well.
The 1’s down the diagonal reflect the fact that each of the four random variables is
perfectly correlated with itself. The values of the four remaining correlation coeffi-
cients cannot be established “by inspection.” It is relatively easy to establish equations
for two of them, however. These equations are a consequence of the following two
theorems. Lo Y

b %

Theorem F.2 If U and V are rélildom variables (discrete or continuous), and if W = U + V,
then the mean of W is

Hw = Uy + 1y
and the variance of W is

UVZV = 0'5 +2yyv + 0"2/ = 6121 + 2pyvouvoy + 0"2,.

The proof of this theorem is left as an exercise. Note that

2
o&,=012,+0v

if and only if U and V are uncorrelated. The independence of U and V is a sufficient condition

for this equation to be vahd f B iy
2 o) D) e o b e S ON)
\, ad f{n — ,//( )./ g ] = 7-{.0}?7;} 4 2.
. ‘There is no simple test for independence. -
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M/M/1 Correlations

Theorem F.3 Let the random variables W, D, and S represent the wait, delay, and service

time experienced by a randomly selected job when a FIFO M/M/1 service node is in steady
state. Define p = A/v, where A is the arrival rate and v is the service rate. Then

o the steady-state correlation between W and S is pys =1 — p, and
o the steady-state correlation between W and D is pwp = +/p2 = p).

Proof. Let pw, ip, and g and o, o3, and o denote the mean and variance of W, D, and §,
respectively. To prove this theorem, we begin with the covariance between W and S. Recall that
W = D + S and that D and § are independent. Therefore,

ww = pp + s and oy =0} +0;.

Moreover,

E[WS] = E[(D + S)S] = E[DS + $*] = E[D] E[S] + E[S*] = upus + E[S?];

as a consequence,

yws = EIWS] — pwis = ppps + E[S?] — (up + us)us = E[S*] — u§ = 0.

Using an analogous argument, we find that the covariance between W and D is ywp = o3.
Therefore, the two correlation coefficients of interest are

LI s as op
/()YZLE-;'— pws=— and pWD=——,
o0 . ow ow
To complete the proof, we need to relate the three standard deviations ow, op, and s to the
steady-state utilization p. Recall (Section 8.5) that, for an M/M/1 service node, the service time
is Exponential (us). Similarly, if the queue discipline is FIFO, the steady-state wait in the node )-

is Exponential (tw), where w = us/(1 — p). Because an Exponential random variable has its )
standard deviation equal to its mean, it follows that

) ) N
PSS . [ P A )
T ow T mw Hw e T
Similarly, P
2
0 =02 — o2 = pd — uk =y — (1 — p)? = wiyp 2 - p),
and, therefore,
VP2 —p)
pwp = 22 = BEVEEZE = o2 ),
ow nww
which establishes the theorem. 0
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Example F.5
The following table summarizes the FIFO M/M/1 service node steady-state correlation
coefficients pws and pwp for selected values of p.

p | 01 02 03 04 05 06 07 08 09

pws | 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100
pwp | 0.436 0.600 0.714 0.800 0.866 0.917 0.954 0.980 0.995

Both (W, S) and (W, D) have a positive correlation, as expected.

The analytic evaluation of the other two nonzero correlation coefficients, pgrp and prw, is
significantly more difficult. In particular, the delay D; and the interarrival time R; of the i job
are related to the delay D;_; and service time S;_; of the previous job (for a FIFO queue, per
Section 1.2) by the nonlinear equation

D; = max{0, D;—1 + S;-1 — R;} i=1,2,3;:u0

Not only is this equation nonlinear; to evaluate ygp, one must know both the paired correlation
between S;_; and D; and the serial correlation between D;_; and D;.

Example F.6
Fortunately, the two correlation coefficients prp and prw are relatively easy to esti-
mate by simulation. Figure F.2 illustrates estimates of these two FIFO M/M/1 service
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node steady-state correlation coefficients (as a dashed line). For comparison, the theo-
retical correlation coefficients from Theorem F.3 are also illustrated (as solid lines).
Both (R, D) and (R, W) have a weak negative correlation, as expected.

F.2 Multivariate Random Variables

The high autocorrelation that typically exists in the time-sequenced stochastic data produced by
a discrete-event simulation makes the statistical analysis of the data a challenge. Specifically, if
we wish to make an interval estimate of some steady-state statistic—for example, the average
wait in a service node—we must be prepared to deal with the impact of autocorrelation on our
ability to make accurate estimates of the standard deviation. The following discussion introduces
the notation and assumptions that are typically used in the analysis of discrete-event simulation
output.

Let X, X2,..., Xp be a batch (sequence) of random variables with common mean . and
common variance ¢2:

E[X;)=p and E[(Xi -] = o

for i =1,2,...,b. These random variables are not assumed to be independent. Instead, we
assume that the correlation between X; and X is

y (i, 1) _rG@iD

) A o

y

where the covariance is
y(,i") = E[(X; — )Xy — w]
and y(i,i) =o2 fori =1,2,...,b. In addition, define the batch mean as

b
2%
i=1

oy
Xe=

S|

and the batch variance as
1 b
2 s o =3 2
S? = 5 ?_—l(X, X)°.

Both X and S? are random variables. We will now compute the expected value of each, along
with the variance of X.

Expected Value of the Batch Mean. The expected value of X is particularly easy to calculate.
Because the expectation operator E[ -] is linear, it follows that

b b
_— 1
EX) =3 ) EXil=32 n=up.
i=1 i=1
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As was discussed in Section 8.1, this result confirms that the batch (sample) mean X is an unbiased
estimator of u.

Expected Value of the Batch Variance. To calculate the expected value of S?, we begin
with the observation that

Q"I'-‘

b
Z (X; — w) —-Z((X,--YH(Y—;L))2

i=1
b

%Z(x X)* + = (x M)Z(X, X)+IZ(Y—;L)2
i=1 i=1

i=1

= 25X —p)

Therefore,

[

b
e 1
2 2 _ 1 21 _ g 1518
E[$*]+ E[X - ] = 3 2 E[(Xi — )] = E;a =0’
1=
where
E[(X - p,)z] >0
is the variance of X. Because the variance of X is positive, we see that the batch variance
§? is a biased estimator of the common variance o?; E[S?] < o2, because the batch variance
underestimates o? by the amount E[(X — 1)?]. As will now be shown, the extent of this expected

underestimation (bias) is determined by the correlation and can be significant.

Variance of the Batch Mean. To calculate the expected value of (X — u)?, recognize that

SOLEE

G"I'—‘

and so

b b b b
-l = YK=Y K =) = > 3200~ Xy =
i=1 i'=1 i=1i'=1

Therefore, from the definition of y (i, i) and p(i, i),

b b
E[(X — w)*] = Zf_‘,y(z i) = G—ZZZp(l’,i').
i=1i'=1

i=1i'=l
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The following theorem summarizes the previous discussion. The details of the proof are left
as an exercise.

Theorem F.4 Let X, X,..., X, be a batch (sequence) of random variables with common
mean p and common variance o2, Let p(i,i’) be the correlation between X; and X for
i=12,...,bandi'=1,2,...,b. Then the expected value of the batch mean is

E[X]=u (the batch mean is an unbiased estimator of w),

the expected value of the batch variance is

E[$?] = o> (the batch variance is a biased estimator of %),

and the variance of the batch mean is

E[X - w’]=1-p)d%

where the bias in the batch variance is

E[X - w] 128 :
1—l—02—“i=1—ﬁ22p(i,i).

i=1i'=1

8=

The bias in the batch variance is determined by the extent to which B is different from 1.
This is illustrated by two important examples.

Example F.7
If p(i,i") =0 for i # i’ (this is the case if the X;’s are independent, and thus uncorre-

lated), then, because p(i,i) =1fori =1,2,...,b,

1

A Lo, o Tonpetd
B bzzlj;p(t,t)=l—ﬁ;p(l,t)— =g = .
i=li'= 1=

1=

Therefore, in this case, the expected value of the batch variance is
b-1
E[$?] = (T) o%.

The result in Example F.7 is the basis for the interval-estimation equation established in

Section 8.1: To estimate the variance of an independent sample (batch) of size b, the (slight) bias
in the batch variance can be removed by using

v Gl it bt _ 1 &
A = —— VIL S 2 D W2
ﬁS e ’z:l(X. X) in place of % = % ‘§=1(X, X)%.
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Unless b is small, this bias correction is largely irrelevant. As the next example illustrates, however,
the bias correction is typically not irrelevant for correlated observations—which are the usual
case in time-sequenced data generated by a discrete-event simulation.

Example F.8
If p(i,i") = pji-i") for i # i’, then the correlation matrix has the form

1 P1 P2 Pp-t |
01 1 PL rr Pb-2
22) P1 1 Tt Pb-3
| Ob-1 pb—2 Pp—3 -+ 1
This assumption is known as weak stationarity. (See Alexopoulos and Seila, 1998.) In
this case,
LA
ﬁ = 1 = 52' Zzp(lvl’)
i=1i'=
= ﬁ(b+2(b —Dp1 +2(b—2)p2 + -+ +2pp-1)
_b=l 2
Jj=l1

where p; is the autocorrelation between X’s separated by a lag j. Therefore, in this
case, the expected value of the batch variance is

1 j

1

We can remove the bias introduced by the autocorrelation by using $2/B to estimate o2.
To do so, however, we must know py, 02, ..., pp—1. In practice, the best we can hope for is to
estimate these autocorrelations by using Definitions 4.4.5 and 4.4.6—that is, we can estimate

B as

b—
)

E[S?] = Bo? where B = ~=
J=

b-1
( _—>rj’
1

where program acs is used to compute r; for j = 1,2, ...,k and it is assumed that p; = 0 for
j>k,sothat,ifb—1>k,thenrj=0for j =k, k+1,...,b—1.

Would the assumptions for Example F.8 hold for the wait times for jobs in a congested
M/M/1 service node in steady state? First, consider the individual wait times. Does each job’s

B="3-3
j=
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wait time have the same mean and variance, i.e., does E[X;] = u and V[X;] = o for some
large index i? Intuitively, the answer is “yes”—all wait times should have identical distributions
at steady state. Second, consider the correlation structure. Does the correlation between the wait
times for job i and job i’ depend only on |i — i’| for the service node at steady state? As a specific
instance, is the correlation between the wait times Xg46 and Xo49 (three jobs apart) the same as
the correlation between Xo7; and Xg74 (also three jobs apart)? As in the first instance, the answer
is probably “yes”—it is reasonable so assume that correlation depends only upon the difference
in the indices of the jobs.

Example F.9

For example, the autocorrelation estimates from Example 4.4.3 were used to compute
ﬁ for various batch sizes b. The “cut-off” autocorrelation lag was, somewhat arbitrarily,
taken to be k = 100, The results were

b| 16 32 64 128 256 512 1024
1017 029 043 060 077 0.88 0.94

and we see, as expected, B — 1 as b — oo—that is, for large batch sizes, the bias in
the variance estimate vanishes. Note, however, that, for this example, positive autocor-
relation causes small batches to yield a variance estimate that is (on average) too small
by a significant factor.

F.3 Exercises

F.1 Prove that the two equations
yuv = E[U — pu)(V = py)] and yov = E[UV]—punv
are equivalent.
F.2 Given that definition of the correlation coefficient of two random variables U and V is
Yuv
puy = )
ayoy

prove that (a) |pyv| < 1; (b) |pyv| = 1 if and only if there exist constants (a, b, ¢) such
that aU + bV + ¢ = 0. Hint: Minimize E[(a(u o L) LA = uv))z] > 0 subject to

the constraint o® + g2 = 1. 3

F.3 Relative to Example F.2, suppose the draw is without replacement, from an urn with
n black and n white balls. (@) What is pyy? (b) Note that pyy — 0 as n = 00. Why?
(¢) Verify the correctness of your pyy equation via a Monte Carlo simulation for the
case n = 5.

F.4 Suppose the relation in Example F.3is V =U 3 (rather than V = U?). (a) What is pyy?
(b) Comment.

F.5 Prove Theorem F.2.

F.6 How would Examples F.4 and F.6 change if the service discipline is “shortest job first”?
Conjecture first, then simulate.
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